Сопротивление порошка

Выполнили:

Торчилов Павел Робертович (11'A), Гулев Михаил Александрович (11'A)

Научный руководитель: Матюк Анатолий Эдуардович, учитель физики СШ №1 г. Лиды

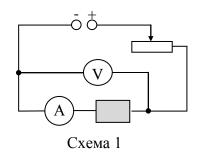
Оглавление

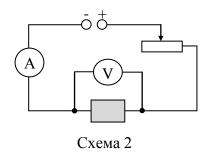
Введение	2
Основная часть	2
Заключение	
Литература	

Введение

Порошок из металлических крупинок хорошо проводит электрический ток, так как удельная проводимость металлов $\sigma \sim 10^6-10^7$ См/м. Порошок из диэлектрического материала ток не проводит, так как удельная проводимость диэлектриков $\sigma \sim 10^{-8}-10^{-18}$ См/м.

Если рассматривать проводимость металлического порошка, то его проводимость будет меньше, чем у сплошного металла, так как между частичками порошка существует воздушный зазор, который значительно увеличивает сопротивление проводящего порошка.


Если металлический порошок смешать с диэлектрическим порошком, то проводимость смеси будет уменьшаться, по сравнению с проводимостью чистого металлического порошка.


Таким образом, чем больше содержание металлического порошка в смеси, тем больше проводимость смеси.

Проверим это на опытах.

Основная часть

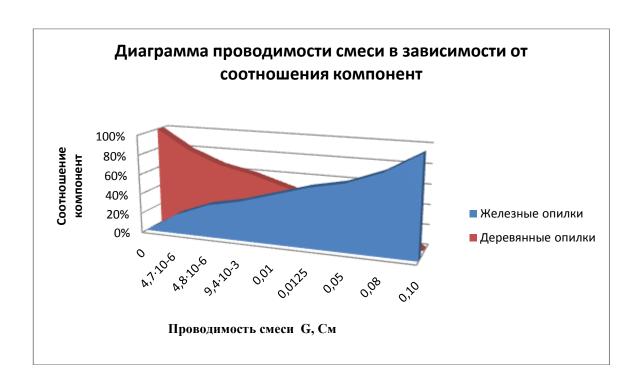
Для проведения опытов мы собрали электрическую цепь, состоящую из источника тока (блок питания ЛИП90), амперметра (ABO-63), вольтметра (прибор типа ТЛ-4), реостата (6 Ω , 2 A), коробки с исследуемой смесью, ключа и соединительных проводов.

Электрическая схема 1 использовалась в случае, когда сопротивление смеси сравнимо с сопротивлением вольтметра (опыты N_2 1-3). Электрическая схема 2 использовалась в случае, когда сопротивление смеси намного меньше сопротивления вольтметра (опыты N_2 4-9).

В качестве металлического порошка использовались железные опилки. В качестве диэлектрического порошка использовались деревянные опилки.

Соотношение компонент смеси рассчитывалось по их объему. Для измерения объема опилок использовался одноразовый шприц без поршня объемом $20~{\rm cm}^3$.

Проводились измерения напряжения U и силы тока I, проходящего через смесь опилок. Затем по формулам рассчитывалось сопротивление R и проводимость G смеси.


$$R = \frac{U}{I}, \qquad G = \frac{I}{U} = \frac{1}{R}.$$

Результаты измерений и вычислений приведены в таблице.

№ опыта	Объем железных опилок $V_{\text{жел}}$, см 3	Объем деревян ных опилок $V_{\rm gep}$, см 3	Соотношение компонент $V_{\text{жел}}:V_{\text{дер}}$	Напря жение U, В	Сила тока I, мА	Сопротивлен ие R, Ом	Проводимость G, См
1	0	15	0:1	4,3	0	∞	0
2	3	12	1:4	4,3	0,02	$2,15\cdot10^5$	$4,7\cdot10^{-6}$
3	5	10	1:2	4,2	0,02	$2,10\cdot10^5$	$4.8 \cdot 10^{-6}$
4	6	9	2:3	3,4	25	106	$9,4\cdot10^{-3}$
5	7,5	7,5	1:1	3,2	32	100	0,01
6	9	6	3:2	3,2	40	80	0,0125
7	10	5	2:1	3,2	160	20	0,05
8	12	3	4:1	3,0	250	12	0,08
9	15	0	1:0	2,5	250	10	0,10

Далее приведены график и диаграмма зависимости проводимости смеси от соотношения компонент.

Смесь, состоящая только из деревянных опилок, ток не проводит, т. е. ее проводимость практически равна нулю.

При увеличении в смеси доли железных опилок ее проводимость увеличивается и достигает максимального значения 0,1 См когда смесь состоит только из железных опилок.

Заключение

При проведении эксперимента было доказано, что порошок из

металлических крупинок хорошо проводит электрический ток, а порошок из диэлектрического материала ток вообще не проводит.

Проводимость смеси компонент из металлических крупинок и диэлектрических крупинок зависит от процентного

соотношения компонент и увеличивается с увеличением содержания в смеси металлических крупинок.

Литература

- 1. Диэлектрики. Значение слова "Диэлектрики" в Большой Советской Энциклопедии. http://bse.sci-lib.com/article029876.html.
- 2. Жилко, В. В. Физика: учеб. пособие для 11-го класса общеобразоват. учреждений с рус. яз. обучения / В. В. Жилко, Л. Г. Маркович. Минск: Нар. асвета, 2008.
- 3. Удельная проводимость. Материал из Википедии свободной энциклопедии. http://ru.wikipedia.org/wiki/Удельная проводимость.
- 4. Удельное электрическое сопротивление. Материал из Википедии свободной энциклопедии. http://ru.wikipedia.org/wiki/Удельное электрическое сопротивление.
- 5. Физика. Удельное сопротивление и температурный коэффициент сопротивления металлических проволок. http://www.calc.ru/606.html.
- 6. Электрическое сопротивление. Материал из Википедии свободной энциклопедии. http://ru.wikipedia.org/wiki/Электрическое_сопротивление.